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Abstract 
 

K-means algorithm is one of the most famous 
unsupervised clustering algorithms. Many theoretical 
improvements for the performance of original 
algorithms have been put forward, while almost all of 
them are based on Single Instruction Single Data 
(SISD) architecture processors (CPUs), which partly 
ignored the inherent paralleled characteristic of the 
algorithms. In this paper, a novel Single Instruction 
Multiple Data (SIMD) architecture processors (GPUs) 
based k-means algorithm is proposed. In this 
algorithm, in order to accelerate compute-intensive 
portions of traditional k-means, both data objects 
assignment and k centroids recalculation are off-
loaded to the GPU in parallel. We have implemented 
this GPU-based k-means on the newest generation 
GPU with Compute Unified Device Architecture 
(CUDA). The numerical experiments demonstrated 
that the speed of GPU-based k-means could reach as 
high as 40 times of the CPU-based k-means. 
 
 
1. Introduction 
 

Clustering is a search method for hidden patterns 
that may exist in datasets. It is a process of grouping 
data objects into disjointed clusters so that the data in 
each cluster are similar, yet different to the other 
clusters. K-means is one of the most famous and 
typical clustering algorithms and applied in many 
application areas such as data analyses, pattern 
recognition, image processing, and information 
retrieval [1,2]. In k-means, a data point is comprised of 
several values, called features. By dividing a cluster of 
data objects into k sub-clusters, k-means represents all 
the data objects by the mean values or centroids of 
their respective sub-clusters. 

K-means has the advantages of fast convergence 
and ease of implementation, but it has poor 
performance in some applications with large dataset 

such as physics simulation. Some implementations use 
k-d trees [3] to accelerate the execution time. Other 
improvements leverage the high degree of task 
parallelism and data parallelism of k-means. For 
example, researchers at Northwestern University 
developed the Minebench using OpenMP [4]. But this 
approach inevitably produces too much message 
communication overhead.  

Nowadays, most desktop computers are equipped 
with programmable graphics processing units (GPUs) 
with plenty powerful Single Instruction Multiple Data 
(SIMD) processors that can support parallel data 
processing and high-precision computation. The rapid 
advance in GPUs performance, coupled with recent 
improvements in its programmability, made it possible 
to parallelize k-means on personal computers. 

In this paper, a novel Single Instruction Multiple 
Data (SIMD) architecture processors (GPUs) based k-
means algorithm is proposed. In this algorithm, both 
data objects assignment and k centroids recalculation 
of traditional k-means are parallel performed on the 
GPU. 

Recently, we noticed that Shuai Che et al. [5] 
published a similar work nearly simultaneously, where 
they used CUDA to put partial steps of k-means onto 
the GPU. The difference in implementation is that our 
approach puts new centroids recalculation step also 
onto GPU and algorithm performance thus becomes 
better. 

The paper is organized as follows. Section 2 
presents the concept and related works of GPGPU. 
Section 3 describes two key loads on GPU and the 
whole GPU-based k-means. The performance analysis 
of our approach is reported in Section 4. Finally, 
conclusions are drawn in Section 5. 
 
2. General-purpose GPU 
 

GPUs are probably today’s most powerful 
computational hardware for the dollar. The rapid 
increase in the performance of graphics hardware, 
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coupled with recent improvements in its 
programmability, have made graphics hardware a 
compelling platform for computationally demanding 
tasks in a wide variety of application domains. A lot of 
researches have been presented in recent years for 
general-purpose computing, an effort known 
collectively as GPGPU (for “General-Purpose 
computing on the GPU”). 

CUDA is a new hardware and software architecture 
for issuing and managing computations on the GPU as 
a data-parallel computing device without the need of 
mapping them to a graphics API [6]. Compared with 
previous programming interfaces such as Cg, CUDA 
provides more flexibility to efficiently map a 
computing problem onto the hardware architecture. 
CUDA applications consist of two parts. The first 
executes on the GPU and is called a ‘kernel’. Kernels 
are implemented in the CUDA programming language, 
which is basically the ‘C’ programming language 
extended with a number of keywords. The other part 
executes on the host CPU and provides control over 
data transfers between CPU and GPU and the 
execution of kernels. 

A kernel program is run by multiple threads that run 
on the GPU. We call a group of threads a block. 
Threads contained in the same block communicate 
with each other using shared memory and cannot 
communicate with threads in another block. 
Calculations on the GPU are started by specifying the 
number of blocks to execute and the number of threads 
that each block contains. The total number of threads is 
the product of the two. 

For now, CUDA is available for the NVIDIA G80 
series, the Tesla solutions, and some Quadro solutions. 
The NVIDIA GeForce 8800GTX hardware 
architecture defines a hierarchical memory structure 
where each level has a different size, access restrictions 
and access speed as illustrated by Fig.1. In general, 
accessing the largest type of memory is flexible but 
slow, while accessing the smallest type of memory is 
restrictive but fast. This memory structure is directly 
exposed by the CUDA programming framework. The 
challenge in mapping a computing problem efficiently 
on a GPU through CUDA is to store frequently used 
data items in the fastest memory, while keeping as 
much of the data on the device as possible. 

 
Fig.1 Hardware Architecture of G80 

In fact, during a short period of one year CUDA 
appears, many algorithms outside the field of image 
rendering and processing are accelerated by CUDA, 
from digital investigation [7] or physics simulation [8] 
to molecular dynamics [9,10]. 

 
3. K-Means algorithm on the GPU 

 
3.1. Data objects assignment 

 
Data objects assignment and k centroids 

recalculation are the most intensive arithmetic task 
load of k-means. There are two strategies in data 
objects assignment process suited to GPU-based k-
means. The first is the centroids-oriented, in which 
distance from each centroid to all data objects are 
calculated and then, each data point will merge itself 
into the cluster represented by nearest centroid. This 
method has advantages when the number of processors 
of GPU is relatively small so that every processor can 
deal with data objects in series. Another is the data 
objects-oriented, namely, each data point calculates the 
distance from all centroids, then data object will be 
assigned to the cluster represented by the centroid with 
the shorest distance from it The latter strategy is 
adapted in this research because our GPU has more 
than one hundred processors [6] as illustrated by Fig.2. 

 
Fig.2 Oriented-data Objects Distances Computing 
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In k-means algorithm, every data point must choose 
the nearest centroid after calculating all the distances, 
this selecting process consists a series of comparison 
which could be carried out through Deep Buffer in 
early GPUs. [Because CUDA doesn’t support Deep 
Buffer, instead we choose to use multiple threads to 
optimize the calculation] In this way, the latency of 
memory access could be avoided while one thread is 
waiting for memory access, and other threads will be 
optimized to use the arithmetic resources. 
 
3.2. K centroids recalculation 
 

The new centroid is the arithmetic means of all data 
objects. The positions of the k centroids are also 
parallel recalculated by GPU and every thread is 
responsible for a new centroid as Fig.3 illustrated. 
 

 
Fig.3 K centroids recalculation 

After data objects assignment, we get the cluster 
label of every data point. A straightforward idea for 
recalculating the position of one centroid is to read all 
data objects and determine whether the data point 
belongs to this centroid or not. Unfortunately, massive 
condition statements are not suitable to the stream 
processor model of GPUs. We add another procedure 
that the cluster labels are downloaded from the device 
(GPU) to the host (CPU) and the host rearranges all 
data objects and counts the number of data objects 
contained by each cluster. And then, both structures are 
uploaded to the global memory of the device. In this 
way, every thread of CUDA kernel can complete its 
task by reading its own data objects continuously. 
Performance test in section 4.2 proved this strategy has 
high efficiency. 
 
3.3. GPU based K Means 
 

The main idea of GPU-based k-means is that data-
parallel, compute-intensive portions of traditional k-
means can be off-loaded from the host to the device to 
improve performance. More precisely, data objects 
assignment and k centroids recalculation executed 
many times, but independently on different data, can 
be isolated into two functions consisted of massive 

threads, parallel executing on the device. Actually, 
each function is compiled to the instruction set of the 
device and the target program, called a kernel, is 
downloaded to the device. 

GPU-based k-means has three fundamental issues to 
be addressed, though the SIMD processors are 
accomplished in parallel computing. First, flow control 
and data caching of the device are weak for its more 
transistors are devoted to compute unit. Second, 
compared with the data transfer rate between the CPU 
and CPU’s cache, the data transfer rate between GPU 
and GPU’s memory (global memory) is much slower, 
then only appropriate size of block and grid is capable 
of winning device’s power. In the end, the transfer time 
between the CPU’s memory and GPU’s memory is 
extra cost relative to traditional k-means on CPU. 
Performance enhancement can be obtained, as long as 
duty assignment for the host and the device, data 
storage, and parallel computing mode are reasonably 
designed and implemented. 

To summarize, we give the whole GPU-based k-
means in Fig.4. 

In task assignment, the host is responsible for 
placing k objects into the space represented by the 
objects that are being clustered and rearranging all data 
objects and controlling iteration process, while the 
device for data-parallel intensive computing. In data 
storage, all data objects and centriods are stored as 
dynamic arrays on the device. The device has three 
kind memories shared by all threads of a kernel: 
constant memory, texture memory and global memory. 
We put all parameters in global memory as both other 
constant memory and texture memory are read-only 
and respective 64KB [6], which are insufficient to data. 
Another remarkable point is that the bandwidth 
between the device and the device memory is much 
higher than the bandwidth between the device memory 
and the host memory. In our approach, the cluster 
labels transfer between the host and the device is very 
small. In parallel computing mode, kernel is assigned 
enough computing routine and massive threads may 
reduce the global memory latency. This frame of GPU-
based k-means is designed by the architectures of 
CPUs and GPUs, which is adapted to not only CUDA, 
but also other mainstream GPGPU environments, such 
as DPVM [11]. 
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Fig.4 The frame of GPU-based k-means 
 
4. Performance analysis 
 

In this section, we compared the performance of 
GPU-based k-means with CPU-based k-means. All 
experiments were performed on a PC with an Intel 
Pentium D 965 CPU 3.7 GHz, 1GB main memory and 
Geforce 8800GTX graphic card, 1.35 GHz engine 
clock speed, 768 MB of device RAM, and 128 stream 
processors, organized into 16 multiprocessors.  

The speedup measurement includes both clustering 
execution time and total execution time. Clustering 
execution time for one iteration of CPU-based k-means 
is denoted by CKcc and GPU-based k-means by GKcc. 
Total execution time of CPU-based k-means is denoted 
by CKtc=I/O+ α CKcc and GPU-based k-means by 
GKtc=I/O+ α GKcc. ( α is a constant and used for 
controlling the influence of data size and convergence 
speed) 

Up to now, all GPUs only stand for single-precision 
floating-point arithmetic. In order to validate the 
correctness of GPU-base k-means, we produce 
samples, consisted of random 32-bit floating point 
numbers from 100K to 1M between 0 and 1. And in 
the iteration, we simulate 64-bit floating point 
manipulations using Kahan's Summation Formula to 
achieve double-type precision, as CUDA follows 
IEEE-754 standard. 
 
4.1. Clustering Cost and Total Cost Comparison 
 

As illustrated by Fig.5, we compared GKcc with 
CKcc. It shows that the speed of GPU-based k-means 
could reach from 27 to 56 times of the CPU–based k-
means. This performance improvement benefits from 

the high parallel computing ability of CUDA and the 
data objects rearrangement strategy. In CUDA and 
G80, 128 processors are all indistinctive, and not 
distinguished by pixel and vertex, so that they can run 
at same time without idle situation. In data objects 
rearrangement, invalid texture fetching and branch 
prediction which could cause low efficiency to GPUs 
are avoided. 
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Fig.5 Clustering Execution Time Comparison 

On the other hand, we compared GKtc with CKtc in 
Fig.6. The speed of GPU-based k-means could reach 
from 8 to 14 times of the CPU–based k-means. This is 
because the I/O cost is higher when α  is set to 20 in 
this test. 
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Fig.6 Total Execution Time Comparison 

 
4.2. Data transfer cost 
 

The data transfer is extra cost of GPU-based k-
means. We also compared the data transfer cost with 
the iteration cost as illustrated by Fig.7. It shows that 
data transfer cost may nearly be ignored compared to 
the iteration cost. The data transfer rate between the 
host memory and the device memory, under PCI-E16x, 
is about 4 GB/s so that it hardly brings influence on the 
whole runtime of GPU-based k-means. 

654654



0

0.05

0.1

0.15

0.2

0.25

0.3

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

Number of Data Objects

E
x
e
c
u
t
i
o
n
 
T
i
m
e
(
s
)

Data Transfer Cost

Iteration Cost

 
Fig. 7 Data Transfer Cost 

 
 
4.1. K value analysis 
 

To study the performance enhancement of GPU-
based k-means under different values of k, the 
clustering speedup of k-means is described by Fig.8. 
We found that this ratio became larger as k increases. 
In data objects assignment, every thread continuously 
read k centroids from global memory and the larger k 
is, the higher memory utilization is. In data objects 
recalculation, k is the number of threads and all 
processors of G80 can work when k is none but more 
than 128. 
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Fig. 8 Speedup under k 

 
5. Conclusion 
 

In this research, we illustrated that nearly all 
complex and time-cost computation of k-means can be 
sped up substantially by offloading work to GPU. The 
CUDA technology used in our experiments is modern 
GPGPU architecture, which is adopted by many 
NVIDIA GPUs. As current trends indicated, future 
GPU designs, also based on general purpose 
multiprocessors, will offer even more computational 
power. Our primary purpose in this research is to prove 

that developing GPU-aware data mining software is 
possible and useful. More GPU-based approach for 
clustering should be further explored. We plan to 
extend our existing implementation to improve the 
clustering accuracy. Another research direction is to 
employ GPU to other data mining algorithms. 
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