
K-Means on commodity GPUs with CUDA

BAI Hong-taoa,b, HE Li-lia,b, OUYANG Dan-tong a,b1, LI Zhan-shan a,b ,LI He a,b
(a. College of Computer Science and Technology, Jilin University, 130012, China;

b. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of
Education, Jilin University, 130012, China)

1 Corresponding Author

Abstract

K-means algorithm is one of the most famous
unsupervised clustering algorithms. Many theoretical
improvements for the performance of original
algorithms have been put forward, while almost all of
them are based on Single Instruction Single Data
(SISD) architecture processors (CPUs), which partly
ignored the inherent paralleled characteristic of the
algorithms. In this paper, a novel Single Instruction
Multiple Data (SIMD) architecture processors (GPUs)
based k-means algorithm is proposed. In this
algorithm, in order to accelerate compute-intensive
portions of traditional k-means, both data objects
assignment and k centroids recalculation are off-
loaded to the GPU in parallel. We have implemented
this GPU-based k-means on the newest generation
GPU with Compute Unified Device Architecture
(CUDA). The numerical experiments demonstrated
that the speed of GPU-based k-means could reach as
high as 40 times of the CPU-based k-means.

1. Introduction

Clustering is a search method for hidden patterns
that may exist in datasets. It is a process of grouping
data objects into disjointed clusters so that the data in
each cluster are similar, yet different to the other
clusters. K-means is one of the most famous and
typical clustering algorithms and applied in many
application areas such as data analyses, pattern
recognition, image processing, and information
retrieval [1,2]. In k-means, a data point is comprised of
several values, called features. By dividing a cluster of
data objects into k sub-clusters, k-means represents all
the data objects by the mean values or centroids of
their respective sub-clusters.

K-means has the advantages of fast convergence
and ease of implementation, but it has poor
performance in some applications with large dataset

such as physics simulation. Some implementations use
k-d trees [3] to accelerate the execution time. Other
improvements leverage the high degree of task
parallelism and data parallelism of k-means. For
example, researchers at Northwestern University
developed the Minebench using OpenMP [4]. But this
approach inevitably produces too much message
communication overhead.

Nowadays, most desktop computers are equipped
with programmable graphics processing units (GPUs)
with plenty powerful Single Instruction Multiple Data
(SIMD) processors that can support parallel data
processing and high-precision computation. The rapid
advance in GPUs performance, coupled with recent
improvements in its programmability, made it possible
to parallelize k-means on personal computers.

In this paper, a novel Single Instruction Multiple
Data (SIMD) architecture processors (GPUs) based k-
means algorithm is proposed. In this algorithm, both
data objects assignment and k centroids recalculation
of traditional k-means are parallel performed on the
GPU.

Recently, we noticed that Shuai Che et al. [5]
published a similar work nearly simultaneously, where
they used CUDA to put partial steps of k-means onto
the GPU. The difference in implementation is that our
approach puts new centroids recalculation step also
onto GPU and algorithm performance thus becomes
better.

The paper is organized as follows. Section 2
presents the concept and related works of GPGPU.
Section 3 describes two key loads on GPU and the
whole GPU-based k-means. The performance analysis
of our approach is reported in Section 4. Finally,
conclusions are drawn in Section 5.

2. General-purpose GPU

GPUs are probably today’s most powerful
computational hardware for the dollar. The rapid
increase in the performance of graphics hardware,

2009 World Congress on Computer Science and Information Engineering

978-0-7695-3507-4/08 $25.00 © 2008 IEEE

DOI 10.1109/CSIE.2009.491

651

2009 World Congress on Computer Science and Information Engineering

978-0-7695-3507-4/08 $25.00 © 2008 IEEE

DOI 10.1109/CSIE.2009.491

651

coupled with recent improvements in its
programmability, have made graphics hardware a
compelling platform for computationally demanding
tasks in a wide variety of application domains. A lot of
researches have been presented in recent years for
general-purpose computing, an effort known
collectively as GPGPU (for “General-Purpose
computing on the GPU”).

CUDA is a new hardware and software architecture
for issuing and managing computations on the GPU as
a data-parallel computing device without the need of
mapping them to a graphics API [6]. Compared with
previous programming interfaces such as Cg, CUDA
provides more flexibility to efficiently map a
computing problem onto the hardware architecture.
CUDA applications consist of two parts. The first
executes on the GPU and is called a ‘kernel’. Kernels
are implemented in the CUDA programming language,
which is basically the ‘C’ programming language
extended with a number of keywords. The other part
executes on the host CPU and provides control over
data transfers between CPU and GPU and the
execution of kernels.

A kernel program is run by multiple threads that run
on the GPU. We call a group of threads a block.
Threads contained in the same block communicate
with each other using shared memory and cannot
communicate with threads in another block.
Calculations on the GPU are started by specifying the
number of blocks to execute and the number of threads
that each block contains. The total number of threads is
the product of the two.

For now, CUDA is available for the NVIDIA G80
series, the Tesla solutions, and some Quadro solutions.
The NVIDIA GeForce 8800GTX hardware
architecture defines a hierarchical memory structure
where each level has a different size, access restrictions
and access speed as illustrated by Fig.1. In general,
accessing the largest type of memory is flexible but
slow, while accessing the smallest type of memory is
restrictive but fast. This memory structure is directly
exposed by the CUDA programming framework. The
challenge in mapping a computing problem efficiently
on a GPU through CUDA is to store frequently used
data items in the fastest memory, while keeping as
much of the data on the device as possible.

Fig.1 Hardware Architecture of G80

In fact, during a short period of one year CUDA
appears, many algorithms outside the field of image
rendering and processing are accelerated by CUDA,
from digital investigation [7] or physics simulation [8]
to molecular dynamics [9,10].

3. K-Means algorithm on the GPU

3.1. Data objects assignment

Data objects assignment and k centroids

recalculation are the most intensive arithmetic task
load of k-means. There are two strategies in data
objects assignment process suited to GPU-based k-
means. The first is the centroids-oriented, in which
distance from each centroid to all data objects are
calculated and then, each data point will merge itself
into the cluster represented by nearest centroid. This
method has advantages when the number of processors
of GPU is relatively small so that every processor can
deal with data objects in series. Another is the data
objects-oriented, namely, each data point calculates the
distance from all centroids, then data object will be
assigned to the cluster represented by the centroid with
the shorest distance from it The latter strategy is
adapted in this research because our GPU has more
than one hundred processors [6] as illustrated by Fig.2.

Fig.2 Oriented-data Objects Distances Computing

652652

In k-means algorithm, every data point must choose
the nearest centroid after calculating all the distances,
this selecting process consists a series of comparison
which could be carried out through Deep Buffer in
early GPUs. [Because CUDA doesn’t support Deep
Buffer, instead we choose to use multiple threads to
optimize the calculation] In this way, the latency of
memory access could be avoided while one thread is
waiting for memory access, and other threads will be
optimized to use the arithmetic resources.

3.2. K centroids recalculation

The new centroid is the arithmetic means of all data
objects. The positions of the k centroids are also
parallel recalculated by GPU and every thread is
responsible for a new centroid as Fig.3 illustrated.

Fig.3 K centroids recalculation

After data objects assignment, we get the cluster
label of every data point. A straightforward idea for
recalculating the position of one centroid is to read all
data objects and determine whether the data point
belongs to this centroid or not. Unfortunately, massive
condition statements are not suitable to the stream
processor model of GPUs. We add another procedure
that the cluster labels are downloaded from the device
(GPU) to the host (CPU) and the host rearranges all
data objects and counts the number of data objects
contained by each cluster. And then, both structures are
uploaded to the global memory of the device. In this
way, every thread of CUDA kernel can complete its
task by reading its own data objects continuously.
Performance test in section 4.2 proved this strategy has
high efficiency.

3.3. GPU based K Means

The main idea of GPU-based k-means is that data-
parallel, compute-intensive portions of traditional k-
means can be off-loaded from the host to the device to
improve performance. More precisely, data objects
assignment and k centroids recalculation executed
many times, but independently on different data, can
be isolated into two functions consisted of massive

threads, parallel executing on the device. Actually,
each function is compiled to the instruction set of the
device and the target program, called a kernel, is
downloaded to the device.

GPU-based k-means has three fundamental issues to
be addressed, though the SIMD processors are
accomplished in parallel computing. First, flow control
and data caching of the device are weak for its more
transistors are devoted to compute unit. Second,
compared with the data transfer rate between the CPU
and CPU’s cache, the data transfer rate between GPU
and GPU’s memory (global memory) is much slower,
then only appropriate size of block and grid is capable
of winning device’s power. In the end, the transfer time
between the CPU’s memory and GPU’s memory is
extra cost relative to traditional k-means on CPU.
Performance enhancement can be obtained, as long as
duty assignment for the host and the device, data
storage, and parallel computing mode are reasonably
designed and implemented.

To summarize, we give the whole GPU-based k-
means in Fig.4.

In task assignment, the host is responsible for
placing k objects into the space represented by the
objects that are being clustered and rearranging all data
objects and controlling iteration process, while the
device for data-parallel intensive computing. In data
storage, all data objects and centriods are stored as
dynamic arrays on the device. The device has three
kind memories shared by all threads of a kernel:
constant memory, texture memory and global memory.
We put all parameters in global memory as both other
constant memory and texture memory are read-only
and respective 64KB [6], which are insufficient to data.
Another remarkable point is that the bandwidth
between the device and the device memory is much
higher than the bandwidth between the device memory
and the host memory. In our approach, the cluster
labels transfer between the host and the device is very
small. In parallel computing mode, kernel is assigned
enough computing routine and massive threads may
reduce the global memory latency. This frame of GPU-
based k-means is designed by the architectures of
CPUs and GPUs, which is adapted to not only CUDA,
but also other mainstream GPGPU environments, such
as DPVM [11].

653653

Fig.4 The frame of GPU-based k-means

4. Performance analysis

In this section, we compared the performance of
GPU-based k-means with CPU-based k-means. All
experiments were performed on a PC with an Intel
Pentium D 965 CPU 3.7 GHz, 1GB main memory and
Geforce 8800GTX graphic card, 1.35 GHz engine
clock speed, 768 MB of device RAM, and 128 stream
processors, organized into 16 multiprocessors.

The speedup measurement includes both clustering
execution time and total execution time. Clustering
execution time for one iteration of CPU-based k-means
is denoted by CKcc and GPU-based k-means by GKcc.
Total execution time of CPU-based k-means is denoted
by CKtc=I/O+ α CKcc and GPU-based k-means by
GKtc=I/O+ α GKcc. (α is a constant and used for
controlling the influence of data size and convergence
speed)

Up to now, all GPUs only stand for single-precision
floating-point arithmetic. In order to validate the
correctness of GPU-base k-means, we produce
samples, consisted of random 32-bit floating point
numbers from 100K to 1M between 0 and 1. And in
the iteration, we simulate 64-bit floating point
manipulations using Kahan's Summation Formula to
achieve double-type precision, as CUDA follows
IEEE-754 standard.

4.1. Clustering Cost and Total Cost Comparison

As illustrated by Fig.5, we compared GKcc with
CKcc. It shows that the speed of GPU-based k-means
could reach from 27 to 56 times of the CPU–based k-
means. This performance improvement benefits from

the high parallel computing ability of CUDA and the
data objects rearrangement strategy. In CUDA and
G80, 128 processors are all indistinctive, and not
distinguished by pixel and vertex, so that they can run
at same time without idle situation. In data objects
rearrangement, invalid texture fetching and branch
prediction which could cause low efficiency to GPUs
are avoided.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

Number of Data Objects

C
P

U
-b

as
ed

 K
-m

ea
ns

 T
im

e(
s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
P

U
-b

as
ed

 K
-m

ea
ns

 T
im

e(
s)CKcc

GKcc

Fig.5 Clustering Execution Time Comparison

On the other hand, we compared GKtc with CKtc in
Fig.6. The speed of GPU-based k-means could reach
from 8 to 14 times of the CPU–based k-means. This is
because the I/O cost is higher when α is set to 20 in
this test.

0

50

100

150

200

250

300

350

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

Number of Data Objects

To
ta
l
 T

im
e
(s

)

CKtc GKtc

Fig.6 Total Execution Time Comparison

4.2. Data transfer cost

The data transfer is extra cost of GPU-based k-
means. We also compared the data transfer cost with
the iteration cost as illustrated by Fig.7. It shows that
data transfer cost may nearly be ignored compared to
the iteration cost. The data transfer rate between the
host memory and the device memory, under PCI-E16x,
is about 4 GB/s so that it hardly brings influence on the
whole runtime of GPU-based k-means.

654654

0

0.05

0.1

0.15

0.2

0.25

0.3

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

Number of Data Objects

E
x
e
c
u
t
i
o
n

T
i
m
e
(
s
)

Data Transfer Cost

Iteration Cost

Fig. 7 Data Transfer Cost

4.1. K value analysis

To study the performance enhancement of GPU-
based k-means under different values of k, the
clustering speedup of k-means is described by Fig.8.
We found that this ratio became larger as k increases.
In data objects assignment, every thread continuously
read k centroids from global memory and the larger k
is, the higher memory utilization is. In data objects
recalculation, k is the number of threads and all
processors of G80 can work when k is none but more
than 128.

0

10

20

30

40

50

60

70

8 16 32 64 128 256 512 1024

Number of Centroids

S
p
e
e
du

p

K-means

Fig. 8 Speedup under k

5. Conclusion

In this research, we illustrated that nearly all
complex and time-cost computation of k-means can be
sped up substantially by offloading work to GPU. The
CUDA technology used in our experiments is modern
GPGPU architecture, which is adopted by many
NVIDIA GPUs. As current trends indicated, future
GPU designs, also based on general purpose
multiprocessors, will offer even more computational
power. Our primary purpose in this research is to prove

that developing GPU-aware data mining software is
possible and useful. More GPU-based approach for
clustering should be further explored. We plan to
extend our existing implementation to improve the
clustering accuracy. Another research direction is to
employ GPU to other data mining algorithms.

Acknowledgements: This work is supported by the

National Natural Science Foundation of China under
grant No.60873148 and No.60773097.

6. References

[1] X.J. Wang, “K-means clustering for multispectral images
using floating-point divide”. Proceedings 2007 IEEE
Symposium on Field-Program Custom Computing Machines
(FCCM 2007), pp.151-59.
[2] H. Zhou, Y.H. Liu, “Accurate integration of multi-view
range images using k-means clustering”. Pattern Recognition
2008, 41(1), pp.152-75.
[3] T. Kanungo, D. Mount, N. Netanyahu, et al. “An efficient
k-means clustering algorithm: analysis and implementation”,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2002, 24(7), pp. 881-892.
[4] J. Pisharath, Y. Liu, W. Liao, et al. “Nu-minebench 2.0.
Technical report”, Northwestern University Department of
Electrical and Computer Engineering, 2005.
http://cucis.ece.northwestern.edu/techreports/pdf/CUCIS-
2004-08-001.pdf.
[5] S. Che, M. Boyer, J. Meng, D. Tarjan, “A performance
study of general-purpose applications on graphics processors
using CUDA”, Journal of Parallel and Distributed
Computing, 2008, 68(10), pp. 1370-1380
[6] Nvidia. “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide”, 2008,
http://developer.download.nvidia.com/compute/cuda.
[7] L. Marziale, G.G. Richard, V. Roussev, “Massive
threading: Using GPUs to increase the performance of digital
forensics tools”, Digital Investigation, 2007(4), pp. 73-81.
[8] R.G. Belleman, J. Bédorf, S.F. Portegies Zwart, “High
performance direct gravitational N-body simulations on
graphics processing units II: An implementation in CUDA”,
New Astronomy, 2008(13), pp.103-112.
[9] W.G. Liu, B. Schmidt, G. Voss, “Molecular Dynamics
Simulations on Commodity GPUs with CUDA”. Lecture
Notes in Computer Science, High Performance Computing –
HiPC 2007, 2007, pp.185-196.
[10] J.A. Anderson, C.D. Lorenz, A. Travesset, “General
purpose molecular dynamics simulations fully implemented
on graphics processing units”, Journal of Computational
Physics, 2008, pp. 5342-5359.
[11] M. Peercy, M. Segal, D.Gerstmann, “A Performance-
Oriented Data Parallel Virtual Machine for GPUs”.
Proceedings of SIGGRAPH 2006, 2006, pp.184-es.

655655

